ON SUBGROUPS OF FINITE SOLUBLE GROUPS III

BY

AVINOAM MANN

ABSTRACT

We define a notion of generalized normality for subgroups of finite soluble groups. We show that a normalizer relative to this notion exists and is homomorphism-invariant. We make comparisons with previous constructions, and develop briefly a general theory of normality relations and normalizers.

In this paper we consider only finite soluble groups; the word *group* and the letter G are reserved to denote such a group, while H always denotes a subgroup of G.

In the two preceding papers with the same title [5, 6], we introduced, for any G and H, some subgroups of G which are *generalized normalizers* of H in G in some sense. In this paper we describe yet one more such construction. The subgroup *XG(H)* which we introduce is the *normalizer* of H defined by a relation which may be described as *the most general abstract normality relation.* The subgroup $X_G(H)$ shares with $Q_G(H)$ (in [5]) the property of being homomorphism invariant. However, the construction of $X_G(H)$ is independent of previous results and seems to us to be simpler than the construction of $Q_G(H)$.

We also discuss briefly *abstract normality relations* in the second half of the paper.

Notation and terminology are mostly standard. We use H^G and H_G , respectively, to denote the normal closure and normal core of H, that is, the smallest normal subgroup containing H and the largest normal subgroup contained in H. H sn G means that H is a subnormal subgroup of G .

Received September 7, 1973

DEFINITION. Let H be a subgroup of the (finite soluble) group G . H is X-normal in *G(H xn G)* if the following condition holds:

(1) Given an epimorphism of G, if $H^{\sigma} \neq G^{\sigma}$, then H^{σ} is contained in a proper normal subgroup of G^{σ} .

In other words, H xn G if, for all $N \Delta G$, $HN \neq G$ implies $H^G N = (HN)^G \neq G$.

PROPOSITION 1. (i). If H xn G and σ is an epimorphism of G, then H^{σ} xn G^{σ} .

(ii) If σ is an epimorphism of G such that H contains the kernel of σ , and H^{σ} xn G^{σ} , then H xn G.

(iii) *If H* xn K xn *G, then H* xn G.

(iv) H is not X-normal in G if and only if there exists an $N \Delta G$, such that *HN is an abnormal maximal subgroup oj" G.*

(v) *H is X-normal in G if and only if, for ever), abnormal maximal subgroup* $M \supseteq H$, we have $M \neq HM_G$.

PROOF. (i), (ii) and (iii) being trivial, and (v) being a reformulation of (iv), we prove only the latter.

First, if for some $N \Delta G$, HN is abnormal and maximal, then $HN \neq G$ and $(HN)^{G} = G$, so *H* is not *X*-normal in *G*. Conversely, let *H* be not *X*-normal, and choose *N* maximal such that $N \Delta G$, $HN \neq G$ but $(HN)^G = G$. Let M/N be a chief factor of G. If $HM \neq G$, then by maximality of N, we have $(HN)^G \subseteq (HM)^G$ $\neq G$, a contradiction. Thus $HM = G$, which means that *HN* complements the chief factor *M/N,* and therefore *HN* is a maximal subgroup of G, which is abnormal, since $(HN)^{G} = G$.

DEFINITION. A subgroup $K \supseteq H$ is an *X-normalizer* of H in G (denoted $K = X_G(H) = X(H)$, if

- (i) $H \times K$, and
- (ii) if H xn $L \subseteq G$, then $L \subseteq K$.

THEOREM 2. *Every subgroup of G possesses an X-normalizer in G.*

FIRST PROOF. By induction on $|G|$. Let N be a minimal normal subgroup of G. Let $L/N = X_{G/N}(HN/N)$, which exists by induction. If $L \neq G$, then, by induction, $K = X_L(H)$ exists, and it is easy to check that $K = X_G(H)$. Thus we assume that for all minimal normal subgroups N of *G, HN* xn G.

If, for some such N, $HN = G$, then H is maximal in G (we assume $H \neq G$), so either $H \Delta G$ and $G = X_G(H)$ or H is abnormal in G, in which case $H = X_G(H)$.

Thus we may assume also that $HN \neq G$, for each minimal normal N. Taking

one such N, we have *HN* xn G, $HN \neq G$, thus $H^G \subseteq (HN)^G \neq G$. Next, if ${1} \neq M \Delta G$ and $HM \neq G$, we may pick a minimal normal $N \subseteq M$, hence *HN* xn G implies *HM* xn G and $(HM)^G \neq G$. Thus H xn G and $G = X_G(H)$.

SECOND PROOF. We may assume that H is not X-normal in G . Pick an abnormal maximal subgroup M such that $M = HM_G$ (Proposition 1(v)): if H xn L, then M xn LM_G implies $M = LM_G$, that is, $L \subseteq M$. Now we can apply induction to M or proceed as follows. Denote, $X_1(H; G) = \bigcap M$ (M maximal and abnormal in G and $M = HM_0$, $X_{i+1}(H; G) = X_1(H; X_i(G))$.

Then it follows that if H xn L, then $L \subseteq X_i(H; G)$, for all i. There exists some n for which $X_n(H; G) = X_{n+1}(H; G)$, and then one verifies that $X_n(H; G) = X_G(H)$.

Thus we also have a procedure for constructing $X_G(H)$. A variant on this construction is obtained by deleting *maximal* in the definition of X_1 .

COROLLARY 3. *Any Sylow system S of G that reduces into H also reduces into* $X_G(H)$.

PROOF. Choose M as in the second proof. (If $X_G(H) = G$ there is nothing to prove.) Then $M = HM_G$ implies that S reduces into $M[1, \text{Cor. } 2.8]$. It follows that *S* reduces into $X_1(H; G)$ [9, Prop. 9], and now we repeat the argument to derive that S reduces into $X_2(H; G)$, and so forth.

THEOREM 4. *The X-normalizer is epimorphism invariant, that is, if* σ *is an epimorphism of G, then* $X_{G}(\mathcal{H}^{\sigma}) = (X_{G}(H))^{\sigma}$.

PROOF. By induction. Let $G^{\sigma} = G/N$, and $X_{G/N}(HN/N) = L/N$; then $X_G(H) \subseteq L$. If $L \neq G$, we apply induction to L. Therefore we assume *HN* xn G, but H is not X-normal in G. Find an $R \Delta G$ such that $HR \neq G$ and $(HR)^G = G$. Now *HN* xn G implies *HRN* xn G, hence if $HRN \neq G$ we obtain

$$
(HR)^{G} \subseteq (HRN)^{G} \neq G.
$$

Thus $HRN = G$. Denote $M = HR$; then $M \neq G$. But $M^{\sigma} = G^{\sigma}$, hence by induction

$$
G^{\sigma} = X_{G^{\sigma}}(H^{\sigma}) = X_{M^{\sigma}}(H^{\sigma}) = (X_{M}(H))^{\sigma} \subseteq (X_{G}(H))^{\sigma},
$$

\n
$$
G^{\sigma} = (X_{G}(H))^{\sigma}.
$$
 Q.E.D.

COROLLARY 5. $X_G(H)$ is abnormal in G.

PROOF. Assume $X_G(H) \subseteq L\Delta M \subseteq G$. Then in *M* | *L* one has

 $HL/L = \{1\}$ xn M/L , $X_M(H)L/L = \{1\}$

contradicting Theorem 4. Thus, whenever, $M \supseteq L \supseteq X_G(H)$, L is not normal in M, which implies that $X_G(H)$ is abnormal [3, VI. 11.17].

As an illustration, we consider some subgroups of groups of small nilpotent length.

THEOREM 6. (i) Let $G = EF$, where E and F are nilpotent subgroups of G , and $F \Delta G$. Then $X_G(E)$ is a Carter subgroup of G.

(ii) *Let D be a system normalizer of G, where G has nilpotent length 3 at most; then* $X_G(D)$ *is a Carter subgroup of G.*

PROOF. (i) It is known that $E \subseteq C$, where C is a Carter subgroup of G [8, **Lemma 1].** Let N be a minimal normal subgroup of G. By induction, $X_G(E)N$ $= CN.$ If $CN \neq G$, we conclude by applying induction in *CN*. Thus assume $CN = G$, hence G/N is nilpotent, for each minimal normal subgroup N of G. If there are at least two minimal normal subgroups, we find that G itself is nilpotent, and everything is trivial. Thus we assume that N is the unique minimal normal sugroup of G, and that $C \neq G$; hence $N = F(G)$, and therefore $F \subseteq N$ and $G = EN = CN$. However, $C \cap N = \{1\}$ (or else $C \supseteq N$ and $G = C$ is nilpotent), hence $E = C$ and $E = X_G(E)$.

(ii). Let $F = F(G)$. Then $DF = CF [3, VI. 12.4]$, and we use (i) in *CF*.

Now let us indicate some possible generalizations and applications of our results.

I. Let us suppose that we are given some notion of abstract normality, that is, we are given a relation H an G, which holds between some of the subgroups of G and G itself. We postulate the following conditions.

(2) If H an G, and σ is an epimorphism of G, then H^{σ} an G^{σ} .

(3) If H is a maximal subgroup of G, then H an G if and only if $H \Delta G$.

Examples of such relations are: normality, subnormality, X-normality, and the relation $Q(H) = G$, where $Q(H)$ is the reducer of H, discussed in [5,6].

PROPOSITION 7. *For any abstract normality relation, if H* an *G, then* Hxn G.

Thus X-normality is the most general abstract normality relation.

PROOF. If H is not X-normal in G, we choose a subgroup M as in Proposition 1(iv). Then $HM_G/M_G = M/M_G$ is not abstract normal in G/M_G , hence H is not abstract normal in G.

A further natural condition to impose is that

(4) H an G and $H \subseteq K \subseteq G$ implies H an K.

An easy induction shows that, for a normality relation satisfying (2) , (3) and (4) , H an G implies H sn G so that (4) is a very strong condition and we refrain from imposing it.

Usually, a normalizer (defined in the obvious way) relative to a given abstract normality does not exist; for example, a subnormalizer usually does not exist. One can always pass from the given relation to one for which a normalizer exists, such as the relation: G is generated by subgroups L such that H an L .

Suppose, next, that our relation satisfies (2), (3) and the following statement.

(5) An abstract normalizer $A_G(H)$ exists, and is epimorphism invariant.

An argument similar to that of Corollary 5 shows that in this case H sn G implies H an G. It follows, that the functor $A_G(H)$ satisfies the following

$$
(6) \t A_G(H) \supseteq N_G(H).
$$

(7) If σ is an epimorphism of G, then $A_{\sigma}^{\sigma}(H^{\sigma}) = (A_{\sigma}(H))^{\sigma}$.

(8) If $H \subseteq L \subseteq G$, then $A_L(H) \subseteq A_G(H)$.

By [6, Th. 2], we now have $A_G(H) \supseteq Q_G(H)$. Every functor satisfying (6)-(8), and the following statement,

(9) if H is an abnormal maximal subgroup of G then $H = A_G(H)$,

is the abstract normalizer functor defined by the relation $G = A_G(H)$. Thus Q and X are the extreme points of the set of functors satisfying (6) – (9) .

II. Let H be a Schunck class, that is, a non-empty class of groups satisfying the following statements:

(10) If $G \in H$ and σ is an epimorphism of G, then $G^{\sigma} \in H$.

(11) If $G/M_G \in H$ for all maximal subgroups M of G, then $G \in H$.

A maximal subgroup M of a group G is termed an *H-normal subgroup,* if $G/M_G \in H$. We define *HX-normality* by changing, in condition X, the phrase "proper normal subgroup" to "H-normal maximal subgroup". Then existence and epimorphism-invariance of HX-normalizers are established as before. We can also give a discussion similar to I above, only in (3) we change " $H \Delta G$ " to H is "H-normal in G", and so forth. (A similar generalization of the functor $Q_G(H)$ was given by Graddon [2].)

III. The subgroup $X_G(H)$ can replace the subgroup $Q_G(H)$ in several con-

structions. We have in mind the Q -series of $[6]$, the construction of Carter subgroups from system normalizers [4, See. 4], and the proof in [7].

ACKNOWLEDGEMENT

I take this opportunity to thank Dr. O. H. Kegel for pointing out and correcting an inaccuracy in the original version of [7].

REFERENCES

1. R. W. Carter, *On a class offinite soluble groups,* Proc. London Math. Soc. (3) 9 (1959), 623-640.

2. C. J. Graddon, *F-reducers in finite soluble groups*, J. Algebra 18 (1971), 574-578.

3. B. Huppert, *Endliche Gruppen* I, Springer-Verlag, Berlin, 1967.

4. A. Mann, *System normalizers andsubnormalizers,* Proc. London Math. Soc. (3)20 (1970), I23-I43.

5. A. Mann, *On subgroups of finite soluble groups,* Proc. Amer. Math. Soc. 22 (1969), 214-216.

6. A. Mann, *On subgroups offinite soluble groups* II, J. Algebra 22 (1972), 233-240.

7. A. Mann, *A characterization of Carter subgroups,* J. London Math. Soe. (2) 5 (1972), 517-518.

8. J. S. Rose, *Abnormal depth and hypereccentric length in flare soluble groups,* Math. Z. 90 $(1965), 29-40.$

9. J. Shamash, *On the Carter subgroup of a soluble group,* Math. Z. 109 (1969), 288-310.

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL