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ABSTRACT 

We define a notion of generalized normality for subgroups of finite soluble 
groups. We show that a normalizer relative to this notion exists and is homo- 
morphism-invariant. We make comparisons with previous constructions, and 
develop briefly a general theory of normality relations and normalizers. 

In this paper we consider only finite soluble groups; the word group and the 

letter G are reserved to denote such a group, while H always denotes a subgroup 

of G. 

In the two preceding papers with the same title [5, 6], we introduced, for any G 

and H, some subgroups of G which are generalized normalizers of  H in G in 

some sense. In this paper we describe yet one more such construction. The subgroup 

XG(H) which we introduce is the normalizer of H defined by a relation which 

may be described as the most general abstract normality relation. The subgroup 

X~(H) shares with QG(H) (in [5]) the property of being homomorphism invariant. 

However, the construction of Xo(H) is independent of  previous results and seems 

to us to be simpler than the construction of Qa(H). 

We also discuss briefly abstract normality relations in the second half of  the 

paper. 

Notation and terminology are mostly standard. We use H ~ and H~, respectively, 

to denote the normal closure and normal core of H, that is, the smallest normal 

subgroup containing H and the largest normal subgroup contained in H. H sn G 

means that H is a subnormal subgroup of  G. 
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DEFtNITION. Let H be a subgroup of the (finite soluble) group G. H is X-normal 

in G(H xn G) if the following condition holds: 

(1) Given an epimorphism of G, if H * #- G*, then H ~ is contained in a proper 

normal subgroup of G *. 

In other words, H xn G if, for all N A G, HN ~ G implies H~N = (HN) ~ ~ G. 

PROPOSITION 1. (i). l f  H xn G and a is an epimorphism of G, then H ~ xn G ~ 

(ii) I f  a is an epimorphism of G such that H contains the kernel of a, and 

H ~  ~ , t h e n H x n G .  

(iii) If H xn K xn G, then H xn G. 

(iv) H is not X-normal in G if and only if there exists an NAG,  such that 

HN is an abnormal maximal subgroup oj" G. 

(v) H is X-normal in G if and only if, for ever), abnormal maximal subgroup 

M ~_ H, we have M ~: HM6. 

PROOF. (i), (ii) and (iii) being trivial, and (v) being a reformulation of (iv), 

we prove only the latter. 

First, if for some NAG, HN is abnormal and maximal, then HN ~ G and 

(HN) ~ = G, so H is not X-normal in G. Conversely, let H be not X-normal, and 

choose N maximal such that NAG, HN ~ G but (HN) G = G. Let M /N be a 

chief factor of G. If  HM ~ G, then by maximality of N, we have (HN) G ~ (HM) ~ 

:~ G, a contradiction. Thus HM = G, which means that HN complements the 

chief factor M/N,  and therefore HN is a maximal subgroup of G, which is ab- 

normal, since (HN) ~ = G. 

DEFINITION. A subgroup K ~ H is an X-normalizer of H in G (denoted 

K = X6(H) = X(H)), if 

(i) H xn K, and 

(ii) if H xn L___ G, then L___ K. 

THEOREM 2. Every subgroup of G possesses an X-normalizer in G. 

FroST PROOF. By induction on [ G I" Let N be a minimal normal subgroup of G. 

Let L/N = Xo/N(HN IN), which exists by induction. If Lr G, then, by induction, 

K = XL(H) exists, and it is easy to check that K = X6(H). Thus we assume that 

for all minimal normal subgroups N of G, HN xn G. 

If, for some such N, HN = G, then H is maximal in G (we assume H r G), so 

either H A G and G = X6(H) or H is abnormal in G, in which case H = X6(H). 

Thus we may assume also that HN ~ G, for each minimal normal N. Taking 
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one such N, we have H N x n G ,  H N # G ,  thus Ha G ( H N ) a # G .  Next, if 

{1} # M A G and HM # G, we may pick a minimal normal N G M, hence HN xn G 

implies HM xn G and (HM) ~ ~ G. Thus H xn G and G = Xa(H ). 

SECOND PROOF. We may assume that H is not X-normal in G. Pick an 

abnormal maximal subgroup M such that M = HMa (Proposition l(v)): 

if H xn L, then M xn LM6 implies M - - - L M a ,  that is, L _  M. Now we can 

apply induction to M or proceed as follows. Denote, Xl(H;  G ) =  f-)M (M 

maximal and abnormal in G and M = HMa) , Xt+I(H; G) = XI(H; X~(G)). 

Then it follows that if H xn L, then L G Xi(H; G), for all i. There exists some n 

for which X,(H; G) = Xn + t(H; G), and then one verifies that X,(H; G) = XG(H). 

Thus we also have a procedure for constructing XG(H). A variant on this 

construction is obtained by deleting maximal in the definition of XI. 

COROLLARY 3. Any Sylow system S of G that reduces into H also reduces 

into XG(H). 

PROOF. Choose M as in the second proof. (If XG(H)= G there is nothing to 

prove.) Then M = HMo implies that S reduces into M[-1, Cor. 2.8]. It follows 

that S reduces into XI(H; G) [9, Prop. 9], and now we repeat the argument to 

derive that S reduces into X2(H; G), and so forth. 

THEOREM 4. The X-normalizer is epimorphism inoariant, that is, if a is an 

epimorphism of G, then Xa,(H*) = (XG(H)) ~ 

PROOF. By induction. Let G ~  G/N, and XG/N(HN/N)= L]N; then 

Xa(H) G L. If  L # G, we apply induction to L. Therefore we assume HN xn G, 

but H is not X-normal in G. Find an R A G such that HR # G and (HR) 6 = G. 

Now HN xn G implies HRN xn G, hence if HRN # G we obtain 

(HR) a G (HRN) ~ # G. 

Thus H R N = G .  Denote M = H R ;  then M # G .  But M S = G * ,  hence by 

induction 

G ~ = Xao(H ~ = XMo(H ~) = (Xt~(H)) ~ G (Xa(H)) ~ 

G * =  (Xa(H)) ~ 

COROLLARY 5. Xa(H) is abnormal in G. 

PROOF. Assume Xa(H) G LA M G G. Then in M [L one has 

HL/L = {1} xn M[L, XM(H)L]L = {1} 

Q.E.D. 
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contradicting Theorem 4. Thus, whenever, M _ L ~  X~(H), L is not normal in M, 

which implies that X~(tt) is abnormal [3, VI. 11.17]. 

As an illustration, we consider some subgroups of groups of small nilpotent 

length. 

THEOREM 6. (i) Let G = EF, where E and F are nilpotent subgroups of G, 

and FAG. Then Xo(E) is a Carter subgroup of G. 

(ii) Let D be a system normalizer of G, where G has nilpotent length 3 at 

most; then Xo(D) is a Carter subgroup of G. 

PROOF. (i) It is known that E _ C, where C is a Carter subgroup of G [8, 

Lemma 1]. Let N be a minimal normal subgroup of G. By induction, XG(E)N 

= CN. If CN ~ G, we conclude by applying induction in CN. Thus assume 

CN = G, hence G/N is nilpotent, for each minimal normal subgroup N of G. If  

there are at least two minimal normal subgroups, we find that G itself is nilpotent, 

and everything is trivial. Thus we assume that N is the unique minimal normal 

sugroup of G, and that C # G; hence N = F(G), and therefore F _  N and 

G = EN = CN. However, C N N = {1} (or else C ~ N and G = C is nilpotent), 

hence E = C and E = XG(E). 

(ii). Let F = F(G). Then OF = CF [3, VI. 12.4], and we use (i) in CF. 

Now let us indicate some possible generalizations and applications of our 

results. 

I. Let us suppose that we are given some notion of abstract normality, that is, 

we are given a relation H an G, which holds between some of the subgroups of G 

and G itself. We postulate the following conditions. 

(2) If  H an G, and o" is an epimorphism of G, then H ~ an G ~ 

(3) If  H is a maximal subgroup of G, then H an G if and only if H A G. 

Examples of such relations are: normality, subnormality, X-normality, and the 

relation Q(H) = G, where Q(H) is the reducer of H, discussed in [5, 6]. 

PROPOSITION 7. For any abstract normality relation, if H an G, then 

Hxn G. 

Thus X-normality is the most general abstract normality relation. 

PROOF. If H is not X-normal in G, we choose a subgroup M as in Proposition 

1(iv). Then HM~ ~Me = M ~Me is not abstract normal in G/M~, hence H is not 

abstract normal in G. 

A further natural condition to impose is that 
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(4) H an G and H _c K _.c G implies H an K. 

An easy induction shows that, for a normality relation satisfying (2), (3) and (4), 

H an G implies H sn G so that (4) is a very strong condition and we refrain 

from imposing it. 

Usually, a normalizer (defined in the obvious way) relative to a given abstract 

normality does not exist; for example, a subnormalizer usually does not exist. 

One can always pass from the given relation to one for which a normalizer exists, 

such as the relation: G is generated by subgroups L such that H an L. 

Suppose, next, that our relation satisfies (2), (3) and the following statement. 

(5) An abstract normalizer A~(H) exists, and is epimorphism invariant. 

An argument similar to that of Corollary 5 shows that in this case H sn G 

implies H an G. It follows, that the functor A~(H) satisfies the following 

(6) Aa(H) ~ Na(H). 

(7) If ~r is an epimorphism of G, then Aa" (HO = (Aa(H))L 

(8) If H c L c G, then AL(H) ~ Aa(H). 

By [6, Th. 2-1, we now have Aa(H) ~_ Qa(H). Every functor satisfying (6)-(8), 

and the following statement, 

(9) if H is an abnormal maximal subgroup of G then H = AG(H), 

is the abstract normalizer functor defined by the relation G = A6(H). Thus Q 

and X are the extreme points of the set of functors satisfying (6)-(9). 

II. Let H be a Schunck class, that is, a non-empty class of groups satisfying 

the following statements: 

(10) If G E H and tr is an epimorphism of G, then G ~ e H. 

(11) If G/M6 ~ H for all maximal subgroups M of G, then G ~ H. 

A maximal subgroup M of a group G is termed an H-normal subgroup, if 

G/M6~ H. We define HX-normality by changing, in condition X, the phrase 

"proper normal subgroup" to "H-normal maximal subgroup". Then existence 

and epimorphism-invariance of HX-normalizers are established as before. We 

can also give a discussion similar to I above, only in (3) we Change . " H A G "  

to H is "H-normal in G", and so forth. (A similar generalization of the func- 

tor Q~(H) was given by Graddon [21.)1 

III. The subgroup X~(H) can replace the subgroup Q~(H)in several Con- 
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struetions. We have in mind the Q-series of  I6], the construction of  Carter sub- 

groups from system normalizers [4, See. 4], and the proof  in [7]. 
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